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Solvable Lie algebras with Abelian nilradicalst 

J C Ndogmo and P Winternitz 
Centre de recherches mathematiques, Universit6 de Montdal, CP 6128, Succ A, Mont&, 
Quebec, Canada H3C 317 

Received 30 March 1993, in final form 24 August 1993 

AbstracL A procedure is presented for classifying solvable Lie algebras with Abelian nilmdicals. 
T3eorems on the structure of such algebras are proven and their centres are consuucted. Many 
examples are analysed. 

R&um6. Une M o d e  est phsentee pour classifier les algkbres de Lie dsolubles avec nilmdicaux 
Abeliens en classes d'isomorphie. La structure de ces algkbres est analysee et leurs centres sont 
constmits. Plusieurs exemples sont analysbs. 

1. Introduction 

The purpose of this article is to present some general results on the structure of finite- 
dimensional solvable Lie algebras with Abelian nilradical N R ,  over the field of complex 
numbers @. The motivation for such a study is multifold. Indeed, the Levi theorem [1,2] 
tells us that any finite-dimensional Lie algebra L can be decomposed in a unique manner 
into a semi-direct sum of a semi-simple Lie algebra S and a solvable ideal R ,  its radical: 

L = S D R  [S,Sl=S [ S , R l G R  [ R , R ] c R .  (1.1) 

The classification of solvable Lie algebras is thus an essential step in the classification of 
all finitedimensional Lie algebras over fields of characteristic zero. The classification of 
all semi-simple Lie algebras over the fields of complex or real numbers, due to Cartan and 
Gantmakher, respectively, is of course classical and can be found in any book on the subject 
[2,31. 

From the point of view of physical (and other) applications we note that solvable 
Lie algebras often occur as Lie algebras of symmetry groups of differential equations. 
Algorithms exist for determining these symmetry algebras [4,5]. Sub-algebras of the 
symmetry algebra can then be used to perform symmetry reduction, i.e. to construct group- 
invariant solutions. An important step in this procedure is to identify the symmetry algebra 
(and its sub-algebras) as abstract Lie algebras. Again, algorithms exist for realizing such an 
identification iin broad terms (like decomposing L into a direct sum, or obtaining its Levi 
decomposition, etc) [6]. A detailed identification presumes the existence of a classification 
of Lie algebras into isomorphy classes. 

For solvable Lie algebras such classifications exist only for low dimensions [7-101. A 
recent article provided a classification of all solvable Lie algebras with Heisenberg algebras 
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as nilradicals (maximal nilpotent ideals) [ll]. Many important general results on solvable 
Lie algebras are due to Maltsev [12]. 

In this article we concentrate on, the case when the solvable Lie algebra L has an 
Abelian nilradical. This case is of particular importance in applications to partial differential 
equations (and hence to physics). Indeed, the presence of Abelian sub-algebras of the 
symmetry algebra is often due to the fact that the equations have constant coefficients, or 
can be transformed into equations with constant coefficients. 

In section 2 we present some general results on the smcture of the Lie algebras L. 
In section 3 we discuss the decomposability or indecomposability of the obtained algebras. 
Section 4 is devoted to the centre C(&) of L and in particular we obtain saturated bounds 
on the dimension of the centre. In section 5 we present some examples. 

J C Ndogmo and P Winternitz 

2. General structure of the Lie algebra 

2.1. General concepts 

A Lie algebra L is solvable if its derived series DS terminates, i.e. 

D S = { L 0 = L L , L 1  = [ L , L J  ,..., Lk=[L!+],LK-]J=O) (2.1) 

for some k 2 0. 
A Lie algebra is nilpotent if its central series CS terminates 

cs = [Lo = L ,  L(') = [t, L ] ,  L'" = [ L ,  L q ,  . . . , L") = [L ,  L"-q = 0) (2.2) 

for some k > 0. 

nilpotent ideal, called the nilradical N R ( L ) .  The dimension of the nilradical satisfies [SI 
Every solvable Lie algebra L has a uniquely defined (upto equivalence) maximal 

(2.3) 

Any solvable Lie algebra L can be written as the algebraic sum of the nilradical NR(L) 
and a complementary linear space F 

n 
r = d i m N R ( L ) > -  n = d i m L .  

2 

L = F + N R ( L ) .  (2.4) 

The derived algebra DL = [ L ,  L]  of a solvable Lie algebra is contained [2] in the nilradical 
DL NR(L).  

An element n of L is nilpotent if it satisfies 

[. . . [ [ x ,  n] ,n] .  . .n] = 0 

when the commutator is taken sufficiently many times. 

linear combination of them is nilpotent. 

Vx E L 

A set of elements { X I ,  . . . , xk] of L is called linearly nilindependent if no non-trivial 

Use will be made of the adjoint representation ad L of L given by 

ad l .  x = y  = [ l , x ]  x , y , l  E L  
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and O f  the restriction of ad L to the nilradical Of L: adNR 1. This restriction ZINR 1 is 
realized by matrices A E K r x r  where K is the ground field assumed to be of characteristic 
zero. If 1 is a nilpotent element of L,  it will be represented by a nilpotent matrix in any 
finite-dimensional representation. In particular ZI#R 1 will be nilpotent. 

A set of matrices in K r x r  will be called linearly nilindependent if no non-trivial 
combination of them is nilpotent. 

From now on we shall assume that NR(L)  is Abelian and that the algebra L is 
indecomposable, i.e. cannot be decomposed into a direct sum of two (or more) sub-algebras. 
The algebra L is finite-dimensional: dim L = n. We shall choose a basis for the nilradical 
and for the space F ,  putting 

NR(L) = [nl, . . .; nr}  
n 
- < r < n - l .  F = (X I -XZ , .  . . , x f )  r + f = n 

(2.5) 

We thus also assume that L is not nilpotent (NR(L) # L). 

2.2. Basic Structural Theorems 

Theorem 1. Let L be a finite-dimensional solvable non-nilpotent Lie algebra over the field 
K and let its nilradical NR(L) of dimension r be Abelian. Then we can choose a basis 
(2.5) of L such that the commutation relations are 

[ni, nd = 0 (2.6b) 
[x,, xs]  = R j p j  RLp E K . ( 2 . 6 ~ )  

The matrices Am are linearly nilindependent and commute painvise 

[Au, AB] = 0 1 < 01,p < f. (2.7) 

For f 2 3 the matrices Au and the constants R$ satisfy 

R ~ ~ A ; ~  + R ; ~ A ~ ~  + R~~ ' A ' - 0  i x  - l c k < r  l < ~ @ v < f .  (2.8) 

A classification of the Lie algebras L thus amounts to a classification of the matrices A' 
and constants R& under the following transformations: 

(1) Redefinition of the space F: 

.tu = x, + r a p i  raj E K 

(2)  Change of basis in F: 
- 
X = G2 

(3) Change o f  basis in NR(L) :  

G E G L ( f ,  K).. 

ii = Sn S E GL(r,  K) 

( 2 . 9 ~ )  

(2.9b) 

( 2 . 9 ~ )  



408 

froof. Equation (2.6) simply expresses known results about the dimension of the nilradical 
of a solvable Lie algebra, the fact that NR(L) is an ideal, that it is by assumption Abelian 
and that the derived algebra is contained in the nilradical. Equation (2.7) is a consequence 
of the Jacobi identities for the triplets [x,,xg, nj), 1 < CY < B < f, 1 j < r .  Similarly, 
(2.8) is a consequence of the Jacobi identities for [xu, x8. x y } ,  1 < CI <, p < y < f. 
The transformations (2.9) leave relations (2.6), (2.7) and (2.8) invariant, but transform the 
.matrices A' and constants R,$. 
' 

More specifically, if we put 

J C Ndogmo and P Wintemitz 

ni = Si& x i  =~G,gxp + raana (2.10) 

we obtain the commutation relations (2.6) with Aa and R i p  replaced by 

A'= = G,p(SA8S-') (2.1 la) 

R$ = (GupGBvRi, + r&gvA;, - rgbGm&,n)( P s-I ) . j .  (2.11b) 

This completes the proof. 

Theorem 1 provides us with a general classification procedure for obtaining all solvable 
Lie algebras L of the considered type for given values of n = dim L and r = dim NR(L).  
The procedure is: 

(1) Classify all Abelian sub-algebras A!(') of gl(r,  K )  of dimension f, containing 
'no nilpotent elements, into conjugacy classes under the action of GL(r,  K ) .  Choose a 
representative of each conjugacy class, i.e. use the transformations (2.11) to transform the 
matrices A', CY = 1, . . . , f into some chosen canonical fonn. 

For f = 1 there is just one matrix A and it can be transformed to its Jordan canonical 
form. For f = r the matrices (A' ,  . . . , A r ]  form a basis of a Cartan sub-algebra of 
gl(r, K). As shown below (theorem 3) the algebra L will, in general, then be decomposable 
(n > 2, K = C and for n > 4, K = R). 

For 1 < f < r the problem of classifying the Abelian sub-algebras A f ( r )  c gI(r,  K) 
is more difficult. Use should be made of known results on maximal Abelian sub-algebras 
of gl(r, K) [13-181 (see below). 

(2) Determine the structure constants RL8 of (2.6~). For f = 1 the question does not 
arise. For f 2 2 we have a mapping from the factor algebra F = [ X I ,  . . . . x!] into K', 
i.e. Re,8 = [R i ,8 }  can be viewed as a two-cocycle. Coboundaries, i.e. trivial cocycles, are 
generated by the transformation (2.9~1). They have the form 

- 

= r,i 8 - rpi A:. (2.12) 'I ' 

Using (2.7). it is easy to check that for f 2 3 the coboundaries D i p  satisfy (2.8). The 
cohomology is trivial if all cocycles are coboundaries. The factor algebra F is then itself 
an Abelian Lie algebra, i.e. we can set R&'= 0 for all CY, p and j .  

(3) Weed out the decomposable Lie algebras among the constructed solvable Lie 
algebras. 

We see from theorem 1 and the above discussion that we cannot expect to have a nice 
closed-form result for solvable Lie algebras of arbitrary dimensions. We shall present further 
partial results that together make the classification of solvable Lie algebras easy, once the 
dimensions r and f are fixed. We shall concentrate on the case K = C but will also point 
out the differences that occur for the field K = IIg. 
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The f matrices Aa form an Abelian sub-algebra A f ( r )  c gl(r, K ) ,  containing no 
nilpotent matrices. Each set A,(r) is contained in at least one maximal Abelian sub-algebra 
(MASA) of gl(r, K). A sizable literature exists on MASAS of the classical Lie algebras: For 
a view of classical results, including the Kravchuk normal form of MASAS of sl(r,  C), we 
refer to Suprunenko and Tyshkevich [13]. More recent results on M A S A S  of other classical 
Lie algebras can be found in [14-181. 

The pertinent results for our purpose are: 
(1) A MASA of gl(r ,  K )  can always be written as 

MASA(gl(r, K)) = KI, 8 MASA(sl(r, K)) 

(2) A MASA of sl(r, K )  can be either indecomposable, or decomposable into a direct 
sum of indecomposable ones. 

(3) An indecomposable M A S A  of sl(r, C) is always a maximal Abelian nilpotent sub- 
algebra ( M A N S ) .  A M A N S  is represented by nilpotent matrices in any finite-dimensional 
representation. A M A N S  is characterized by a Kravchuk signature 

( A , w L ,  U) 1 < A  I ( v  O < p  A + p + v = r  A , ~ , v E Z  

and can be transformed to Kravchuk normal form. Thus, all matrices X of a MANS of 
sl(r, C) can be simultaneously written in the form 

0 0  

Y B 0, 
X =  i" A S, 0 )  '.. 1) (2.13) 

where O,, 0, and S, are square matrices of the indicated dimension. Commutativity imposes 
further conditions [13-171 on the matrices A, B and S,. 

(4) An indecomposable MASA of s l ( r ,R)  can either be absolutely indecomposable 
(AID) or indecomposable, but not absolutely indecomposable (ID & NAID). The absolutely 
indecomposable ones are MANS and can be written as in (2.13), but with~real entries. 
Thus they remain indecomposable after field extension. The non-absolutely indecomposable 
MASA'S of sl(r, R), on the other hand, become decomposable afier complexification. They 
exist only for r even and have the form 1151 

0 1  
-1 0 

0 1  
- 1  0 

0 1 .  
-.. -1 0 

r 
8 MASA(sl(r0, C)) ro = - 2 (2.14) 

where sl(r0, C) is represented by the matrices 
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The corresponding MANS of sl(r0, C) can again be written in Kravchuk normal form. 
Let us now return to the commuting mahkes A' of (2.6) and (2.11). They form an 

Abelian sub-algebra of gl(r, K) and hence a sub-algebra of some MASA. This MASA cannot 
be a MANS; as a matter of fact it contains no nilpotent elements at all. Hence all matrices 
A, can be simultaneously brought to the same block diagonal form. Moreover each block 
can be brought to a triangular form. 

J C Ndogmo und P Wituernitz 

We thus arrive at the following &eorem. 

Theorem 2.  Let L be a finite-dimensional solvable Lie algebra over C with an Abelian 
nilradical NR. The matrices Au in (2.6) and in theorem 1 can be simultaneously transformed 
into a block diagonal form 

(2.16~) 

1 < r l  < r z < . . - < r p  0 < rp+4 < rptP-l < t.. < rptl . 

The off-diagonal elements of each triangular block TF(u;) form an Abelian nilpotent sub- 
algebra of sl(rj ,  C). 

In order to obtain all complex solvable Lie algebras of the considered type, we must 
consider all partitions of r satisfying (2.16~). For each partition we must construct all 

U inequivalent Abelian indecomposable sub-algebras of sl(rj, C), 1 < j < p + q. 

Comments. 
(1) Notice that the Abelian sub-algebras of sl(rj, C) need not be maximal. They must 

however be indecomposable, otherwise they would also appear in some other decomposition 
of r .  

(2) The situation for K = Iw is conceptually quite similar, however the usual 
complications arise. Thus, in addition to the non-nilpotent and nilpotent blocks y(1) 
and T;(O), respectively, a further type of non-nilpotent block can occur, namely 

0 

bu c! 
I 1  

-cj" bj" 

(2.17) 
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with cj" # 0 for at least one value of a. Each block ?(by, cy) provides either one, or two 
non-nilpotent matrices As. Consider for instance, f = 2, I = 4. We can have 

0 1  I O  

A ' = ( :  
A.;(' * * l o  ) 

* - 1  0 * * 0 1  
(one block), or 

(two blocks). 
The matrices Am will have the form 

(2.18a) 

with y(a j" )  as in (2.16b), f;+l(b;+i,cp+i) as in (2.17). The linear nilindependence of 
A',  . . . , Af is assured by setting 

a! J J  = 6U l < i 6 p  ~ + 2 q > f  (2.18b) 

Theorem 2 goes quite far towards a classificanon of the solvable algebras L with Abelian 
and by appropriately specifying the entries (b&,,  c,",), 1 < j 6 q .  

nilradical NR(L), as can be seen from the following example. 

Example. K = C, dimL = n = 8, dimNR(L) = r = 5, f = 3. We have 3 matrices 
A',  A', A3 E R5", hence we need at least 3 blocks to assure linear nilindependence. The 
allowed partitions, values of p and q and corresponding matrices are 
(1) 5 = 3 +  1 + 1 ( p  = 3,s = 0) 

' 1  0 

0 
1 

(2.19a) 
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C0"Jtativity requires that the three-dimensional block should represent a MASA of 
gl(3,  C). There are 3 possible Kravchuk signatures, for which we have 

J C Ndogmo und P Winternitz 

(201) U, = o  
(102) c,=o cu=1,2,3 
(111) u.=c,. 

(2.19b) 

We mention that here, and in some cases below, further simplifications are possible. Take 
for example the Kravchuk signature (1 I l), i.e. a, = ca. By a change of bask in the 
nilradical we can transform (U I ,  61) into (1, O), (0, I), or (0,O). For ul = 1, bl = 0 no 
further simplifications are possible. For a, = 0, bl = 1 we can transform (uz, bd into 
(uz, 0), (0, bz) or (0,O) for u2 # 0; uz = 0, bz + 0, or uz = bz = 0, respectively. In the 
last case we can take (~13~63) into (LO), (0, l), or (0, 0), as the case m y  be. Thus, the 
number and range of parameters can be greatly restricted at the price of splitting each case 
into many subcases. We shall skip this type of discussion below. 
( 2 ) 5 = 2 + 2 + l  ( p = 3 ,  s=O) 

(3)  5 = 2 +  1+ 1 +  1 

p = 3 s = 1 for (bi , bz, b3) = (O,O, 0) 
p = 4 s = O  for (bl,bz, 63) # (O,O,O). 
( 4 ) 5 = 5 x  1 

(2.21) 

p = 3 s = 2 for U; = b; = 0 
p = 4  s = 1 for (ul,uz,a3) # (O,O,O) b; = 0 
p = 5 s = 0 for (al. U Z ,  us) # (O,O, 0) (bl, bz, b3) # (O,O, 0) . 

(2.22) 

All four cases above also occur for K = R, but further ones also exist, for example 
( 5 ) 5 = 3 + 2  (p=1 ,  q = 1 ,  s=O) 
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((2.196) holds for ai, bi, ci). 
( 6 ) 5 = 1 + 2 + 2  ( p = 2 ,  q = l ,  s = 0 )  

(2.24) 

( 7 ) 5 = 1 + 2 + 2  ( p = 1 ,  q = 1 ,  s = l )  

( 9 ) 5 = 1 + 2 + 2  ( p = 1 ,  q = 2 )  

(2.27) 

(10) 5 = 1 + 2 +  1 + 1 

p = 1, q = 1, s = 2 for ai = bi = 0 
p = 2 ,  q = 1 ,  s=l for (a , , u z ,a~)# (O,O,O)  bi=O 
p = 3 ,  9 = 1, s = 0 for (al. az. a31 # (O,O, 0) (bl ,  b2, b3) p (O,O, 0 ) .  

(2.28) 

3. Decomposability properties of the solvable Lie algebras 

3.1. General comments 

So far, nothing guarantees that  the Lie algebras L described in theorems 1 and 2 are 
indecomposable. Indeed, in general, they may be decomposable into direct sums of lower- 
dimensional Lie algebras, either solvable with Abelian nilradicalsi'or Abelian, 

(3.1) L = L ,  e L2 e . .  . $ L k .  

This type of decomposition can occur in  two manners, described below. 
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3.2. Central decompositions 

then the algebra L is decomposable. 

Proposition 3. Let C(L) be the centre of L 

and let 

J C Ndogmo and P Wintenzitz 

' The algebra L may have a centre C(L). If the centre is not contained in the derived algebra, 

[C(L), L ]  = 0 C ( L )  c L (3.2) 

cw = C ~ ( L ) C B C ~ ( L )  C ~ ( L ) _ C D ( L )  G ( L ) ~ D ( L )  = O .  (3.3) 

(3.4) 
U 

The centre C ( L )  is an Abelian ideal in L. Conditions (3.3) assure that the factor 

Then 

L - G/C1 (L)) fB CI ( L )  
where L / C I  ( L )  is itself a solvable Lie algebra with an Abelian nilradical. 

Prooj 
algebra Lc/Cl(L) is a Lie algebra (none of D(L)  is removed). 

Proposition 4. Let the algebra L of theorems 1 and 2 be such that the set of matrices Aa 
contains so one-dimensional zero blocks: 

(3.5a) Tp+q+j(0) = 0 

f(f - 1) 

s - S O  + 1 < j < s 

and let 

(3.5b) so 

Then the algebra is decomposable. 

ProoJL: The existence of the SO zero blocks implies that the centre C(L) contains the 
corresponding so elements nj, f - SO + 1 < j < f .  These elements nj do not figure in 
the derived algebra D(L)  in (2.6a). The only way they can be contained in D(L)  is on 
the right-hand side of relations (2.6~). Only f(f - 1)/2 such relations exist, hence at most 
that many linearly independent elements of N R ( L )  figure in (2.6~). If (3.5) holds then the 
centre C ( L )  contains at least 

(3.6) 
f(f - 1 )  > o  

2 
SI = so - 

elements, not contained in D(L) .  By proposition 3, the algebra is decomposable. 

3.3. Nun-central decomposition 
A non-central decomposition into two (or, successively, more) solvable Lie algebras occurs 
if the matrices Au of (2.16a) can be split into two sets satisfying 

(3.7) 

fo + 1 < B 6 f 
The two sets of elements 

SI = ( X I , .  . . .qi9 nl,  . . . , n,, k 
will form mutually commuting Lie algebras if we also have 

AY E K"'" A! E KRX" r1 +r2 = r . 

SZ = {q,+, , . . . ,xf, +,+I . .  . . , nr,th1 (3.8) 

(3.9) [xu, xpl = 0 1 < 01 < fo fo + 1 < B G f . 
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3.4. Nilradicals of minimal dimemion 

Let us consider the case when 

1 .  n 
r = dimNR(L) = -dimL = - 

2 2 i.e. r = f. 

In this case the matrices A', a = 1, . . . , r form a"-dimensional Abelian sub-algebra of 
gl(r,  K) containing no nilpotent elements. This is only possible if the algebra (A' ,  . . . , A ' }  
is actually a Cartan sub-algebra of gl(r, K) (a maximal Abelian self-normalizing sub- 
algebra, i.e. a MASA containing no nilpotent elements). 

Consider first the case of K = C. Over the field of complex numbers all Canan sub- 
algebras of a semi-simple Lie algebra are mutually conjugate. In particular, the Cartan 
sub-algebra of gl(r, C) can be represented by r diagonal matrices and we can put 

(A')ik = 6,iS,r [ni ,  x.1 = Giini . (3.10) 

From (2.8) we obtain R i Y  = 0 for j # a or j p 0. From (2.llb) with G = I ,  S ~ =  I ,  
raB = -R  , ram = R:8 we see that we can set B 

UP 

R$ = 0 14 u,B, j < r .  (3.11) 

Thus the algebra L is indecomposable for f = r = 1 and is decomposable into a direct 
sum of two-dimensional algebras for r = f 2. 

Now consider the algebra L over the field of real numbers K = R. Cartan sub-algebras 
of the real simple Lie algebras were classified by Kostant [ 191 and Sugiura [20].  In particular 
gl (r ,  B) has [r/23 + 1 inequivalent classes of Cartan sub-algebras. Each Cartari sub-algebra 
can be represented by the matrices 

c, = o < rz 6 [i] r l f 2 r z = r .  

(3.12) 

From (3.12) we see that we can choose the matrices A" to satisfy 

(AEL)ik = S a i h  I < a < r ,  

(A% = bAGuiSnk + 6iu+ibu+i)  

( A ~ ) i a = ~ ~ ( B i ~ - i S k ~ - S i . G ~ ~ - i )  a = r l + 2  r 1 + 4  ,..., r l + 2 r z .  

From relations (2.8) and (2.116) we see that we can set Ria = 0 for all values of a, p, j .  

a = ri + 1 rI + 3,. . . . rI + 2rz - 1 (3.13) 

Let us sum up the results as a theorem. 
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Theorem 3. Precisely two indecomposable solvable real Lie algebras L with Abelian 
nilradical N R  satisfying 

n = dimL = 2dim NR = 2r (3.14) 

exist, namely 

r = 1 [ n , x ] = n  (3.15) 
r = 2  [n l ,x l l=nl  [ni ,xz l=nz [ n z . x d = n z  In~.xzI=-n1 

[XI, X Z ]  = 0 [nl, nz1 = 0 .  (3.16) 

Precisely one indecomposable complex solvable Lie algebra satisfying (3.14) exists; it is 
given by the commutation relations (3.15). 

Every other solvable Lie algebra satisfying (3.14) is decomposable into a direct sum of 
the Lie algebras (3.15) for K = C, and into a direct sum of the Lie algebras of (3.15) and 

0 (3.16) for K = R. 

4. Solvable Lie algebras with centres of maximal dimension 

Consider a,Gn a solvable Lie algebra L with an Abelian nilradical NR(L).  An important 
characteristic of L is the dimension of its centre C(L). Here we shall establish the maximal 
possible dimension 

d~ = max[dimC(L)] (4.1) 

compatible with the requirement that the algebra L be indecomposable. 
As mentioned above, indecomposability implies 

C(L)  -C N L )  -C NR(&).  (4.2) 

We also have C ( L )  + NR(L) ,  otherwise L would be nilpotent. 

theorems 1 and 2 
Let us define a matrix A E KrXf'  obtained by joining together all the matrices ALL of 

A = (A'A'. . . Af)  E K r X f r .  (4.3) 

An element nj will be contained in the centre, nj E C(L),  if the j t h  row of A consists' 
entirely,of zeros. In order to maximize the dimension dimC(L) of C ( L )  we must hence 
maximize the number of zero rows in A. In view of (2.18~) we see immediately that zero 
rows can only be contained in the nilpotent blocks Tp*+j(0). 

To ensure that the matrices A' be linearly nilindependent in the most economic way 
we use the first f rows in A, e.g. by choosing An to satisfy 

(A');a = Bni& 1 < i < f 1 < k < r . (4.4) 

We have r - f further rows at our disposal in A. We distinguish two cases. 
(1) r - f < f(f - W. 
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In this case we can set all the remaining rows in A equal to zero 
9 

(A')n = 0 f + 1 < i < r l < k < r  (4.6) 

[xc, X p l =  n,, 

and put 

f + 1 < p < r (4.7) 

where (4.7) means that each value of p appears for at least one pair (a, p). 
In this case we have 

d , = r -  f. (4.8) 

Notice that the Jacobi identities (2.8) are satisfied identically and that none of the n,, in 
(4.7) can be annulled by the transformations (2.10). 
(2)  r - f =- f(f - W 2 .  

We choose the first f rows in A as in (4.4) and the last f (f - 1) /2  rows to consist 
entirely of zeros. The commutation relations (4.7) axe imposed with 

[xu. q l  = nf r -  f(f- ' )  + 1 < 1 < r .  (4.9) 2 
The rows f + 1 Q i < r - (f (f - 1)) /2  are still at our disposal and their number is 

- (4.10) f (f + 1) N o = r -  
2 '  

Let us put 

N o = ( f + l ) q o + U  O < U < ~  O < q o  q o , ~ E i Z .  (4.11) 

We can now further maximize the dimension of the centre by choosing the remaining blocks 
in A" to be of the type Tf+i(O). satisfying 

Tf+j(O) E K ( f+ ' ) ' ( f+ ' )  j = 1 ,  . . . ,qo ~f+~~+l(O) E K"'" U > 2 .  (4.12) 

For U = 1 we must add one further non-zero entry on the diagonal of A'. 
We thus have, for U 2 2 

E" E CfXf ( E U ) i k  = s,s, 

(4.13a) 

Em 
TP(0) 

T: (0) 
A a =  [ 

%+I (0) 
0, 

(4.13b) 
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The dimension of the centre is 
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f ( f - l )  + f qo+v  - 1 for u >, 2 

for v = O , l .  
dim C(L) = 

We replace qr, using (4.10) and (4.11) and obtain 

(4.14) 

[zfr - f(f+ 1) - 2(f+ 1 -U)] 

[Zfr - f(f + U1 

Y >, 1 

u = o .  
(4.15) dim C ( L )  = 

Z ( f  + 1) 

The condition that the algebra L be indecomposable, i.e. C(L)  c D(L) ,  requires that 

f ( f - l ) + l <  x J \  . < r  (4.16) r -  

the elements 

2 " j  

all occur in the commutation relations ( 2 . 6 ~ )  and that the matrices 

(4.17~) 

all have maximal rank: 

det Mj # 0 j = 1. . . . , qo rankM,+I = U < f . (4.17b) 

It is easy to verify that the Jacobi identities (2.8) are satisfied. 
The matrices A' of (4.13) can be subjected to a simultaneous similarity transformation 

A"' = GAeg-'. We choose G in the form 

(4.18) 

where I%,,,+] E KYX"  IS ' a square matrix containing U ... iearly independent rows c -  .W,,+I. 
Thus we transform the rows in the matrix (4.13b) into ones satisfying 

a!. =a,; 01 = 1, _ _  .,f j = 1, ..., 90 at,+li = a n i  01 = I ,..., U. 
11 

(4.19) 

The results of this section can now be summed up as a theorem. 
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0 
0 0 0 0  
0 0 0 0  
0 0 0 0  
I 0 0 0  

A' = 
0 0  

0' 0 
0 

0 
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2 A =  

Theorem 4. Let L he a solvable non-nilpotent indecomposable Lie algebra of dimension 
n = r + f with Abelian nilradical NR of dimension r with f < r < n. Let C ( L )  be the 
centre of L.  Define the non-negative integers qo and U by relations (4.10) and (4.11). The 
maximal possible dimension dM of the centre C ( L )  is given by 

i f r - f < w  

0 
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 1 0 0  

0 0  
02 0 

0 

The algebra L,  over the fields K = C, or K = R, can be realized as in theorems 1 
and 2, with the matrices Aa realized as in (4.13), satisfying (4.19). For U = 1 the 
nilpotent block of dimension v x U is replaced by on the diagonal of ALL with 

0 
(aqo+,, 1 
the commutation relations [x,, xp ]  generate the entire subspace (4.16). 

. . . , a*+') f # (0, 0, . . . , 0). The structure constants Rip in (2.6b) must be such that 

Comments. 
(1) The construction of the matrices Am, described above, is always possible and guarantees 
the maximal dimension of C(L). It is, however, not necessarily unique. What is unique is 
the maximal number of zero rows in the matrix A, i.e. the value dM in (4.20). 
(2) Over the field K = IR the linear nilindependence of the matrices Aa can be arranged as 
in (4.13). Alternatively, in the left top corner of A' we can replace any pair 

(4.21) 

to obtain a different Lie algebra L with the same centre C ( L )  (these algebras are inequivalent 
over R, equivalent over C). 

w = 2. We have 
Let us consider an example with n =15, f = 3, r = 12. We then have No = 6, qo = 1,  
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1 
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 1 0  

A3 = 
0 0  

a3 o 
0 

0 

(a’,u2,a3) = ( I ,  I , u ) ,  or (1,O,O) (up topennutations) 

and condition (4.16) is satisfied by putting 

[XI,XZ] =nlo [xz1x31 =n11 [ ~ 3 , ~ 1 1 = n 1 2 .  

(4.22) 

(4.23) 

5. Special cases and examples 

5.1. The case f = 1 
We have a single element x and hence a single matrix A in theorems 1 and 2. A classification 
of algebras L is, in this case, given by classifying the Jordan canonical forms of a non- 
nilpotent matrix A E Krx‘ .  Let us construct the Lie algebras with centres of maximal 
dimension. 

We have, using (4.10) and (4.11). r = 240 + 1 + U. 
For U = 0 we have 

r - 1  
r=2qo+l  dM=-- -qo (5.1) 

and the matrix A of theorem 4 reduces to 

A =  [:: ... 1 (5.2) 

0 0  
1 0  

and the centre is C(L)  = (nz ,  n4,. . . , E%”). 
The algebra with dM = qo is, in this case, unique, both for K = C and K = R. 
For U = 1 we have 

The matrix A of theorem 4 reduces to 

A =  i‘ .,_ 1 s = ( ‘  J a + O  (5.4) 

0 0  
1 0  
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where we have combined the non-zero diagonal entry a corresponding to v = 1 into the 
matrix S. 

This realization is, however, not unique. The maximal dimension of C(L), given in 
(5.3) can be achieved in several other ways. More specifically, the entries in the first 4 
rows in A of (5.4) can have any of the following forms: 

0 
0 0  
* * a  

Ao.1= ( a ; ;) 

0 
0 0  
* * o  

A0.3 = ( l Y 0  ) 
0 1 0  

(5.5) 

0 0  1 0  1 .  
where Ao,s is equivalent to A0.l over C, but distinct over R. 

5.2. The case f = 2 
We have NO = r - 3 = 340 + U ,  U = 0,1,2. Consider first the case (4.5), which occurs for 
r 6 3. For r = 2 we have no centre, for r = 3 we have dM = r - f = 1 and 

Now let us consider r z 3. Three possibilities occur: 
( 1 )  U = 0 r = 340 f 3  dM = $(2r - 3). 

Over C we have just one realization: 
I 

0 
0 
0 0  
* * o  

A' = 

\ 
[XI, x ~ l  = n, . (5.7) 

Over R, the entries in the first 2 rows can be replaced by 

respectively. 
(2)  v = 1 r = 340 + 4 dM = f ( 2 r  - 5). 

We put 
SI 

0 
0 0  
* * o  

A ' =  1 1 0 
0 0  
* * o  

0 

(5.8) t ~ i , x z l = n , .  
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The construction of theorem 4 corresponds to 
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The same dimension dM of the centre can be achieved in several other ways, such as by 
replacing the entries in the first three rows of SI, Sz by 

or putting 

(3) U = 2 r = 3qo + 5 dM = (2r - 4) /3 .  
Over C there is just one realization 

0 

* O  0 

(5.11) 

(5.12) 

Over Iw the first two rows can be replaced in the usual manner to obtain a further algebra 
L with the same dM. 

A result for f = 2 that is worth mentioning is: 
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Proposition 3. Let L be a solvable Lie algebra of dimension n with an Abelian nilradical, 
satisfying n = f fr, f = 2. If L has no centre C(L) ,  then the algebra is a semidirect sum 
of an Abelian factor algebra (XI. XZ} and an Abelian nilradical, i.e. we have 

(5.13) 
Proof. If we have C ( L )  = 0 theorem 2 implies that the matrix A = ( A I A ~ )  has no zero 
rows. The matrix i = (A:AT)T has no zero columns, hence the image space of i is all 
of NR. From (2.12) with G = I, S = I we see that we can annul all coefficients i?!2 and 
obtain (5.13). 

k I xzl = 0. 

6. Conclusions 

The results of this article make it quite easy to obtain representative lists of all isomorphy 
classes of solvable Lie algebras L with Abelian nilradicals for any chosen dimension n. It 
is, however, obvious that such lists, for n > 6 will be very long. The results for 2 < n < 6 
are known [7-lo]. They can easily be reconstructed, using theorems 1 and 2 of this article. 
For n = 2.3 we need only consider f = 1, for n = 4,5,6 only f = 1 and f = 2. 

Detailed proofs of all assertions in this article and further results on solvable Lie algebras 
with Abelian nilradicals are contained in [21], available from the author upon request. 
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